Quantum Variational Autoencoder

نویسندگان

  • Amir Khoshaman
  • Walter Vinci
  • Brandon Denis
  • Evgeny Andriyash
  • Mohammad H. Amin
چکیده

Variational autoencoders (VAEs) are powerful generative models with the salient ability to perform inference. Here, we introduce a quantum variational autoencoder (QVAE): a VAE whose latent generative process is implemented as a quantum Boltzmann machine (QBM). We show that our model can be trained end-to-end by maximizing a well-defined loss-function: a “quantum” lowerbound to a variational approximation of the log-likelihood. We use quantum Monte Carlo (QMC) simulations to train and evaluate the performance of QVAEs. To achieve the best performance, we first create a VAE platform with discrete latent space generated by a restricted Boltzmann machine (RBM). Our model achieves state-of-the-art performance on the MNIST dataset when compared against similar approaches that only involve discrete variables in the generative process. We consider QVAEs with a smaller number of latent units to be able to perform QMC simulations, which are computationally expensive. We show that QVAEs can be trained effectively in regimes where quantum effects are relevant despite training via the quantum bound. Our findings open the way to the use of quantum computers to train QVAEs to achieve competitive performance for generative models. Placing a QBM in the latent space of a VAE leverages the full potential of current and next-generation quantum computers as sampling devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent Neural Network-Based Semantic Variational Autoencoder for Sequence-to-Sequence Learning

Sequence-to-sequence (Seq2seq) models have played an import role in the recent success of various natural language processing methods, such as machine translation, text summarization, and speech recognition. However, current Seq2seq models have trouble preserving global latent information from a long sequence of words. Variational autoencoder (VAE) alleviates this problem by learning a continuo...

متن کامل

Proximity Variational Inference

Variational inference is a powerful approach for approximate posterior inference. However, it is sensitive to initialization and can be subject to poor local optima. In this paper, we develop proximity variational inference (pvi). pvi is a new method for optimizing the variational objective that constrains subsequent iterates of the variational parameters to robustify the optimization path. Con...

متن کامل

Statistical Speech Enhancement Based on Probabilistic Integration of Variational Autoencoder and Non-Negative Matrix Factorization

This paper presents a statistical method of single-channel speech enhancement that uses a variational autoencoder (VAE) as a prior distribution on clean speech. A standard approach to speech enhancement is to train a deep neural network (DNN) to take noisy speech as input and output clean speech. Although this supervised approach requires a very large amount of pair data for training, it is not...

متن کامل

Variational Autoencoder based Anomaly Detection using Reconstruction Probability

We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...

متن کامل

Stick-breaking Variational Autoencoders

We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05779  شماره 

صفحات  -

تاریخ انتشار 2018